3.91 \(\int \frac{\sin (a+b x)}{\sqrt{d \tan (a+b x)}} \, dx\)

Optimal. Leaf size=47 \[ \frac{\sin (a+b x) E\left (\left .a+b x-\frac{\pi }{4}\right |2\right )}{b \sqrt{\sin (2 a+2 b x)} \sqrt{d \tan (a+b x)}} \]

[Out]

(EllipticE[a - Pi/4 + b*x, 2]*Sin[a + b*x])/(b*Sqrt[Sin[2*a + 2*b*x]]*Sqrt[d*Tan[a + b*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0572691, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {2601, 2572, 2639} \[ \frac{\sin (a+b x) E\left (\left .a+b x-\frac{\pi }{4}\right |2\right )}{b \sqrt{\sin (2 a+2 b x)} \sqrt{d \tan (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]/Sqrt[d*Tan[a + b*x]],x]

[Out]

(EllipticE[a - Pi/4 + b*x, 2]*Sin[a + b*x])/(b*Sqrt[Sin[2*a + 2*b*x]]*Sqrt[d*Tan[a + b*x]])

Rule 2601

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(Cos[e + f*x
]^n*(b*Tan[e + f*x])^n)/(a*Sin[e + f*x])^n, Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sin (a+b x)}{\sqrt{d \tan (a+b x)}} \, dx &=\frac{\sqrt{\sin (a+b x)} \int \sqrt{\cos (a+b x)} \sqrt{\sin (a+b x)} \, dx}{\sqrt{\cos (a+b x)} \sqrt{d \tan (a+b x)}}\\ &=\frac{\sin (a+b x) \int \sqrt{\sin (2 a+2 b x)} \, dx}{\sqrt{\sin (2 a+2 b x)} \sqrt{d \tan (a+b x)}}\\ &=\frac{E\left (\left .a-\frac{\pi }{4}+b x\right |2\right ) \sin (a+b x)}{b \sqrt{\sin (2 a+2 b x)} \sqrt{d \tan (a+b x)}}\\ \end{align*}

Mathematica [C]  time = 0.125529, size = 60, normalized size = 1.28 \[ \frac{2 \sin (a+b x) \sqrt{\sec ^2(a+b x)} \sqrt{d \tan (a+b x)} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\tan ^2(a+b x)\right )}{3 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]/Sqrt[d*Tan[a + b*x]],x]

[Out]

(2*Hypergeometric2F1[3/4, 3/2, 7/4, -Tan[a + b*x]^2]*Sqrt[Sec[a + b*x]^2]*Sin[a + b*x]*Sqrt[d*Tan[a + b*x]])/(
3*b*d)

________________________________________________________________________________________

Maple [B]  time = 0.147, size = 531, normalized size = 11.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)/(d*tan(b*x+a))^(1/2),x)

[Out]

-1/2/b*2^(1/2)*(cos(b*x+a)-1)^2*(2*cos(b*x+a)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1
/2))*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a)
)/sin(b*x+a))^(1/2)-cos(b*x+a)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*((cos(b*x+
a)-1)/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(
1/2)+2*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*
((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)-EllipticF((-(cos(b*
x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))
/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)+cos(b*x+a)^2*2^(1/2)-cos(b*x+a)*2^(1/2))*(cos
(b*x+a)+1)^2/cos(b*x+a)/sin(b*x+a)^4/(d*sin(b*x+a)/cos(b*x+a))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (b x + a\right )}{\sqrt{d \tan \left (b x + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*tan(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(b*x + a)/sqrt(d*tan(b*x + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d \tan \left (b x + a\right )} \sin \left (b x + a\right )}{d \tan \left (b x + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*tan(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*tan(b*x + a))*sin(b*x + a)/(d*tan(b*x + a)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin{\left (a + b x \right )}}{\sqrt{d \tan{\left (a + b x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*tan(b*x+a))**(1/2),x)

[Out]

Integral(sin(a + b*x)/sqrt(d*tan(a + b*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (b x + a\right )}{\sqrt{d \tan \left (b x + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*tan(b*x+a))^(1/2),x, algorithm="giac")

[Out]

integrate(sin(b*x + a)/sqrt(d*tan(b*x + a)), x)